Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.584
Filtrar
1.
Biochemistry ; 63(1): 27-41, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38078826

RESUMO

Protein-protein interactions regulate many cellular processes, making them ideal drug candidates. Design of such drugs, however, is hindered by a lack of understanding of the factors that contribute to the interaction specificity. Specific protein-protein complexes possess both structural and electrostatic complementarity, and while structural complementarity of protein complexes has been extensively investigated, fundamental understanding of the complicated networks of electrostatic interactions at these interfaces is lacking, thus hindering the rational design of orthosterically binding small molecules. To better understand the electrostatic interactions at protein interfaces and how a small molecule could contribute to and fit within that environment, we used a model protein-drug-protein system, Arf1-BFA-ARNO4M, to investigate how small molecule brefeldin A (BFA) perturbs the Arf1-ARNO4M interface. By using nitrile probe labeled Arf1 sites and measuring vibrational Stark effects as well as temperature dependent infrared shifts, we measured changes in the electric field and hydrogen bonding at this interface upon BFA binding. At all five probe locations of Arf1, we found that the vibrational shifts resulting from BFA binding corroborate trends found in Poisson-Boltzmann calculations of surface potentials of Arf1-ARNO4M and Arf1-BFA-ARNO4M, where BFA contributes negative electrostatic potential to the protein interface. The data also corroborate previous hypotheses about the mechanism of interfacial binding and confirm that alternating patches of hydrophobic and polar interactions lead to BFA binding specificity. These findings demonstrate the impact of BFA on this protein-protein interface and have implications for the design of other interfacial drug candidates.


Assuntos
Fator 1 de Ribosilação do ADP , Tiocianatos , Brefeldina A/farmacologia , Brefeldina A/química , Eletricidade Estática , Fator 1 de Ribosilação do ADP/química , Proteínas/metabolismo
2.
PLoS Pathog ; 19(9): e1011673, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37721955

RESUMO

The cellular protein GBF1, an activator of Arf GTPases (ArfGEF: Arf guanine nucleotide exchange factor), is recruited to the replication organelles of enteroviruses through interaction with the viral protein 3A, and its ArfGEF activity is required for viral replication, however how GBF1-dependent Arf activation supports the infection remains enigmatic. Here, we investigated the development of resistance of poliovirus, a prototype enterovirus, to increasing concentrations of brefeldin A (BFA), an inhibitor of GBF1. High level of resistance required a gradual accumulation of multiple mutations in the viral protein 2C. The 2C mutations conferred BFA resistance even in the context of a 3A mutant previously shown to be defective in the recruitment of GBF1 to replication organelles, and in cells depleted of GBF1, suggesting a GBF1-independent replication mechanism. Still, activated Arfs accumulated on the replication organelles of this mutant even in the presence of BFA, its replication was inhibited by a pan-ArfGEF inhibitor LM11, and the BFA-resistant phenotype was compromised in Arf1-knockout cells. Importantly, the mutations strongly increased the interaction of 2C with the activated form of Arf1. Analysis of other enteroviruses revealed a particularly strong interaction of 2C of human rhinovirus 1A with activated Arf1. Accordingly, the replication of this virus was significantly less sensitive to BFA than that of poliovirus. Thus, our data demonstrate that enterovirus 2Cs may behave like Arf1 effector proteins and that GBF1 but not Arf activation can be dispensable for enterovirus replication. These findings have important implications for the development of host-targeted anti-viral therapeutics.


Assuntos
Infecções por Enterovirus , Enterovirus , Proteínas Monoméricas de Ligação ao GTP , Poliovirus , Humanos , Enterovirus/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Fator 1 de Ribosilação do ADP/genética , Fator 1 de Ribosilação do ADP/metabolismo , Células HeLa , Poliovirus/genética , Proteínas Virais/metabolismo , Antígenos Virais/metabolismo , Brefeldina A/farmacologia , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo
3.
Bioorg Med Chem ; 90: 117380, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37329677

RESUMO

27 novel 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione derivatives of brefeldin A were designed and synthesized to make them more conducive to the cancer treatment. The antiproliferative activity of all the target compounds was tested against six human cancer cell lines and one human normal cell line. Compound 10d exhibited nearly the most potent cytotoxicity with IC50 values of 0.58, 0.69, 1.82, 0.85, 0.75, 0.33 and 1.75 µM against A549, DU-145, A375, HeLa, HepG2, MDA-MB-231 and L-02 cell lines. Moreover, 10d inhibited metastasis and induced apoptosis of MDA-MB-231 cells in a dose-dependent manner. The potent anticancer effects of 10d were prompted based on the aforementioned results, the therapeutic potential of 10d for breast cancer was worth further exploration.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Brefeldina A/farmacologia , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Apoptose , Estrutura Molecular
4.
Molecules ; 28(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298761

RESUMO

Brefeldin A has a wide range of anticancer activity against a variety of tumor cells. Its poor pharmacokinetic properties and significant toxicity seriously hinder its further development. In this manuscript, 25 brefeldin A-isothiocyanate derivatives were designed and synthesized. Most derivatives showed good selectivity between HeLa cells and L-02 cells. In particular, 6 exhibited potent antiproliferative activity against HeLa cells (IC50 = 1.84 µM) with no obvious cytotoxic activity to L-02 (IC50 > 80 µM). Further cellular mechanism tests indicated that 6 induced HeLa cell cycle arrest at G1 phase. Cell nucleus fragmentation and decreased mitochondrial membrane potential suggested 6 could induce apoptosis in HeLa cells through the mitochondrial-dependent pathway.


Assuntos
Antineoplásicos , Neoplasias do Colo do Útero , Feminino , Humanos , Células HeLa , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo , Brefeldina A/farmacologia , Brefeldina A/uso terapêutico , Proliferação de Células , Apoptose , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Relação Estrutura-Atividade
5.
Ann Bot ; 131(6): 967-983, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37076269

RESUMO

BACKGROUND AND AIMS: Endosidins are a group of low-molecular-weight compounds, first identified by 'chemical biology' screening assays, that have been used to target specific components of the endomembrane system. In this study, we employed multiple microscopy-based screening techniques to elucidate the effects of endosidin 5 (ES5) on the Golgi apparatus and the secretion of extracellular matrix (ECM) components in Penium margaritaceum. These effects were compared with those caused by treatments with brefeldin A and concanamycin A. Penium margaritaceum's extensive Golgi apparatus and endomembrane system make it an outstanding model organism for screening changes to the endomembrane system. Here we detail changes to the Golgi apparatus and secretion of ECM material caused by ES5. METHODS: Changes to extracellular polymeric substance (EPS) secretion and cell wall expansion were screened using fluorescence microscopy. Confocal laser scanning microscopy and transmission electron microscopy were used to assess changes to the Golgi apparatus, the cell wall and the vesicular network. Electron tomography was also performed to detail the changes to the Golgi apparatus. KEY RESULTS: While other endosidins were able to impact EPS secretion and cell wall expansion, only ES5 completely inhibited EPS secretion and cell wall expansion over 24 h. Short treatments of ES5 resulted in displacement of the Golgi bodies from their typical linear alignment. The number of cisternae decreased per Golgi stack and trans face cisternae in-curled to form distinct elongate circular profiles. Longer treatment resulted in a transformation of the Golgi body to an irregular aggregate of cisternae. These alterations could be reversed by removal of ES5 and returning cells to culture. CONCLUSIONS: ES5 alters secretion of ECM material in Penium by affecting the Golgi apparatus and does so in a markedly different way from other endomembrane inhibitors such as brefeldin A and concanamycin A.


Assuntos
Carofíceas , Brefeldina A/farmacologia , Matriz Extracelular de Substâncias Poliméricas , Complexo de Golgi , Matriz Extracelular
6.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982858

RESUMO

OSW-1, a steroidal saponin isolated from the bulbs of Ornithogalum saundersiae, is a promising compound for an anticancer drug; however, its cytotoxic mechanisms have not been fully elucidated. Therefore, we analyzed the stress responses triggered by OSW-1 in the mouse neuroblastoma cell line Neuro2a by comparing it with brefeldin A (BFA), a Golgi apparatus-disrupting reagent. Among the Golgi stress sensors TFE3/TFEB and CREB3, OSW-1 induced dephosphorylation of TFE3/TFEB but not cleavage of CREB3, and induction of the ER stress-inducible genes GADD153 and GADD34 was slight. On the other hand, the induction of LC3-II, an autophagy marker, was more pronounced than the BFA stimulation. To elucidate OSW-1-induced gene expression, we performed a comprehensive gene analysis using a microarray method and observed changes in numerous genes involved in lipid metabolism, such as cholesterol, and in the regulation of the ER-Golgi apparatus. Abnormalities in ER-Golgi transport were also evident in the examination of secretory activity using NanoLuc-tag genes. Finally, we established Neuro2a cells lacking oxysterol-binding protein (OSBP), which were severely reduced by OSW-1, but found OSBP deficiency had little effect on OSW-1-induced cell death and the LC3-II/LC3-I ratio in Neuro2a cells. Future work to elucidate the relationship between OSW-1-induced atypical Golgi stress responses and autophagy induction may lead to the development of new anticancer agents.


Assuntos
Antineoplásicos , Saponinas , Camundongos , Animais , Saponinas/farmacologia , Linhagem Celular , Colestenonas/farmacologia , Antineoplásicos/farmacologia , Complexo de Golgi/metabolismo , Brefeldina A/farmacologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo
7.
Biochim Biophys Acta Gen Subj ; 1867(5): 130331, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36804277

RESUMO

This study determined the effect of brefeldin A (BFA) on the free N-glycomic profile of HepG2 cells to better understand the effect of blocking intracellular vesicle formation and transport of proteins from the endoplasmic reticulum to the Golgi apparatus. A series of exoglycosidase- and endoglycosidase-assisted analyses clarified the complex nature of altered glycomic profiles. A key feature of BFA-mediated alterations in Gn2-type glycans was the expression of unusual hybrid-, monoantennary- and complex-type free N-glycans (FNGs). BFA-mediated alterations in Gn1-type glycans were characterized by the expression of unusual hybrid- and monoantennary-FNGs, without significant expression of complex-type FNGs. A time course analysis revealed that sialylated hybrid- and complex-type Gn2-type FNGs were generated later than asialo-Gn2-type FNGs, and the expression profiles of Gn2-type FNGs and N-glycans were found to be similar, suggesting that the metabolic flux of FNGs is the same as that of protein-bound N-glycans. Subcellular glycomic analysis revealed that almost all FNGs were detected in the cytoplasmic extracts. Our data suggest that hybrid-, monoantennary- and complex-type Gn2-type FNGs were cleaved from glycoproteins in the cytosol by cytosolic PNGase, and subsequently digested by cytosolic endo-ß-N-acetylglucosaminidase (ENGase) to generate Gn1-type FNGs. The substrate specificity of ENGase explains the limited expression of complex Gn1 type FNGs.


Assuntos
Glicosídeo Hidrolases , Polissacarídeos , Humanos , Brefeldina A/farmacologia , Células Hep G2 , Polissacarídeos/metabolismo , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase
8.
Toxins (Basel) ; 15(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36828446

RESUMO

N-glycolylneuraminic acid (Neu5Gc) is a specific factor in red meat that induces intestinal disease. Our aim was to investigate the effect of Neu5Gc on the intestinal barrier as well as its mechanism of endocytosis and exocytosis. Ten specific inhibitors were used to explore the mechanism of Neu5Gc endocytosis and exocytosis by Caco-2 cells. Amiloride hydrochloride and cytochalasin D had the strongest inhibitory effect on the endocytosis of Neu5Gc. Sodium azide, dynasore, chlorpromazine hydrochloride, and nystatin also inhibited Neu5Gc endocytosis. Dynasore exhibited a stronger inhibitory effect than that of chlorpromazine hydrochloride or nystatin alone. Exocytosis inhibitors, including nocodazole, brefeldin A, monensin, and bafilomycin A, inhibited the transmembrane transport of Neu5Gc. Monensin promoted the exocytosis of Neu5Gc from Caco-2 cells. In another experiment, we observed no significant inhibitory effects of monensin and brefeldin A. Dietary concentrations of Neu5Gc induced prominent damage to intestinal tight junction proteins zonula occludens-1 (ZO-1), occludin, and claudin-1 and promoted the phosphorylation of IκB-α and P65 to activate the canonical Nuclear Factor kappa-B (NF-κB) pathway. Neu5Gc increased the RNA levels of pro-inflammatory factors IL-1ß, IL-6, and TNF-α and inhibited those of anti-inflammatory factors TGF-ß and IL-10. BAY, an NF-κB signaling pathway inhibitor, attenuated these changes. Reductions in the levels of ZO-1, occludin, and claudin-1 were recovered in response to BAY. Our data reveal the endocytosis and exocytosis mechanism of Neu5Gc and prove that Neu5Gc can activate the canonical NF-κB signaling pathway, regulate the transcription of inflammatory factors, thereby damaging intestinal barrier function.


Assuntos
Clorpromazina , NF-kappa B , Humanos , NF-kappa B/metabolismo , Células CACO-2 , Ocludina , Claudina-1/metabolismo , Brefeldina A/metabolismo , Brefeldina A/farmacologia , Clorpromazina/metabolismo , Clorpromazina/farmacologia , Monensin/metabolismo , Monensin/farmacologia , Nistatina/metabolismo , Nistatina/farmacologia , Transdução de Sinais , Mucosa Intestinal
9.
Plant Cell Physiol ; 64(4): 392-404, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-36318453

RESUMO

Endoplasmic reticulum (ER) stress is caused by the stress-induced accumulation of unfolded proteins in the ER. Several compounds are used to induce the unfolded protein response (UPR) in animals, with different modes of action, but which ER stress-inducing drugs induce ER stress in microalgae or land plants is unclear. In this study, we examined the effects of seven chemicals that were reported to induce ER stress in animals on the growth, UPR gene expression and fatty acid profiles of Chlamydomonas reinhardtii (Chlamydomonas) and Arabidopsis thaliana (Arabidopsis): 2-deoxyglucose, dithiothreitol (DTT), tunicamycin (TM), thapsigargin, brefeldin A (BFA), monensin (MON) and eeyarestatin I. In both model photosynthetic organisms, DTT, TM, BFA and MON treatment induced ER stress, as indicated by the induction of spliced bZIP1 and bZIP60, respectively. In Chlamydomonas, DTT, TM and BFA treatment induced the production of transcripts related to lipid biosynthesis, but MON treatment did not. In Arabidopsis, DTT, TM, BFA and MON inhibited seed germination and seedling growth with the activation of bZIP60. These findings lay the foundation for using four types of ER stress-inducing drugs in photosynthetic organisms, and they help uncover the mode of action of each compound.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Chlamydomonas , Arabidopsis/metabolismo , Chlamydomonas/metabolismo , Estresse do Retículo Endoplasmático , Resposta a Proteínas não Dobradas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brefeldina A/farmacologia , Fenótipo , Lipídeos
10.
Methods Mol Biol ; 2557: 39-51, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36512208

RESUMO

The Golgi apparatus has essential roles in all eukaryotic cells, and its importance in plants is further exemplified by a critical role in building a cellulosic cell wall. The Golgi apparatus houses numerous cell wall-synthesizing or cell wall-modifying enzymes to generate the complex cell wall structure. However, several putative cell wall biosynthetic candidates await characterization, which requires verification of the subcellular localization and enzymatic products. Here, we describe detailed methods to analyze the localization of proteins that are transiently produced in tobacco leaves or stably produced in transgenic plants, by confocal microscopy using fluorescent-tagged proteins along with known Golgi markers or the trafficking inhibitor brefeldin A. We also detail a procedure to analyze the enzymatic products through antibody-based immunoblotting after cell wall enrichment.


Assuntos
Parede Celular , Complexo de Golgi , Imuno-Histoquímica , Complexo de Golgi/metabolismo , Parede Celular/metabolismo , Brefeldina A/farmacologia , Brefeldina A/metabolismo , Microscopia Confocal
11.
Genes (Basel) ; 13(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36292624

RESUMO

Interleukin 17F (IL17F) has been found to be involved in various inflammatory pathologies and has recently become a target for therapeutic purposes. In contrast to IL17F secreted by immune cells, the focus of this study is to describe the triggers of IL17F release in non-immune cells with a particular focus on IL17F-induced fibrosis. IL17F induction was examined in human lung epithelial (BEAS-2B) and myeloid cell lines as well as in peripheral blood mononuclear cells after in vitro exposure to aqueous cigarette smoke extract (CSE), inorganic mercury, cadmium or the apoptosis inducer brefeldin A. Fibrosis was examined in vitro, evaluating the transition of human primary dermal fibroblasts to myofibroblasts. We observed that all stressors were able to induce IL17F gene expression regardless of cell type. Interestingly, its induction was associated with cytotoxic/apoptotic signs. Inhibiting oxidative stress by N-acetylcysteine abrogated CSE-induced cytotoxic and IL17F-inducing effects. The induction of IL17F was accompanied by IL17F protein expression. The transition of fibroblasts into myofibroblasts was not influenced by either recombinant IL17F or supernatants of CSE-exposed BEAS-2B. In addition to IL17F secretion by specialized or activated immune cells, we underscored the cell type-independent induction of IL17F by mechanisms of inhibitable oxidative stress-induced cytotoxicity. However, IL17F was not involved in dermal fibrosis under the conditions used in this study.


Assuntos
Acetilcisteína , Mercúrio , Humanos , Acetilcisteína/farmacologia , Interleucina-17/genética , Leucócitos Mononucleares , Brefeldina A/farmacologia , Cádmio , Apoptose , Estresse Oxidativo , Fibrose , Mercúrio/farmacologia
12.
J Med Chem ; 65(18): 11970-11984, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36089748

RESUMO

Brefeldin A (BFA), a well-known natural Arf-GEFs inhibitor, is effective against hepatocellular carcinoma (HCC), while the poor solubility, serious toxicity, and short half-life limit its potential. Herein, distinct corresponding prodrugs of BFA, including esters 1-15, carbonates 16-24 and 30-32, and carbamates 25-29, were synthesized and evaluated. CHNQD-01255 (16) with improved aqueous solubility (15-20 mg/mL) demonstrated favorable pharmacokinetic profiles. It behaved as expected by undergoing rapid conversion to BFA in vivo, and achieved sufficient high plasma exposure, prolonged half-life, as well as the improved bioavailability of BFA (F = 18.96%). Meanwhile, CHNQD-01255 significantly suppressed tumor growth (TGI = 61.0%) at a dose of 45 mg/kg (p.o.) in the xenograft model. Notably, the improved safety profile of CHNQD-01255 (MTD > 750 mg/kg, p.o.) was confirmed to be superior to that of BFA (MTD < 506 mg/kg). Overall, CHNQD-01255 may serve as a safe and effective new anti-HCC prodrug.


Assuntos
Carcinoma , Pró-Fármacos , Animais , Brefeldina A/farmacologia , Carbamatos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Camundongos , Pró-Fármacos/síntese química , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico
13.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142626

RESUMO

Fibrosis is a common final pathway of chronic kidney disease, which is a major incurable disease. Although fibrosis has an irreversible pathophysiology, the molecular and cellular mechanisms responsible remain unclear and no specific treatment is available to halt the progress of renal fibrosis. Thus, an improved understanding of the cellular mechanism involved and a novel therapeutic approach are urgently required for end-stage renal disease (ESRD). We investigated the role played by interleukin-10 (IL-10, a potent anti-inflammatory cytokine) in kidney fibrosis and the mechanisms involved using IL-10-/- mice and TCMK-1 cells (mouse kidney tubular epithelial cell line). Endoplasmic reticulum stress (ERS), apoptosis, and fibrosis in IL-10-/- mice were more severe than in IL-10+/+ mice after unilateral ureteral obstruction (UUO). The 4-Phenylbutyrate (an ERS inhibitor) treatment induced dramatic reductions in ERS, apoptosis, and fibrosis-associated factors in the renal tissues of IL-10-/- mice, compared to wild-type controls after UUO. On the other hand, in cultured TCMK-1 cells, the ERS inducers (tunicamycin, thapsigargin, or brefeldin A) enhanced the expressions of proapoptotic and profibrotic factors, though these effects were mitigated by IL-10. These results were supported by the observation that IL-10 siRNA transfection aggravated tunicamycin-induced CHOP and a-SMA expressions in TCMK-1 cells. We conclude that the anti-fibrotic effects of IL-10 were attributable to the inhibition of ERS-mediated apoptosis and believe that the results of this study improve the understanding of the cellular mechanism responsible for fibrosis and aid in the development of novel therapeutic approaches.


Assuntos
Interleucina-10 , Nefropatias , Insuficiência Renal Crônica , Obstrução Ureteral , Animais , Apoptose , Brefeldina A/farmacologia , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Fibrose , Interleucina-10/metabolismo , Rim/metabolismo , Nefropatias/metabolismo , Camundongos , RNA Interferente Pequeno/metabolismo , Insuficiência Renal Crônica/metabolismo , Tapsigargina/farmacologia , Tunicamicina/farmacologia , Obstrução Ureteral/metabolismo
14.
Plant J ; 112(3): 786-799, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36111506

RESUMO

Cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC) is a glycolytic enzyme, but undergoes stress-induced nuclear translocation for moonlighting. We previously reported that in response to heat stress, GAPC accumulated in the nucleus to modulate transcription and thermotolerance. Here we show a cellular and molecular mechanism that mediates heat-induced nuclear translocation of cytosolic GAPC in Arabidopsis thaliana. Heat-induced GAPC nuclear accumulation and plant heat tolerance were reduced in Arabidopsis phospholipase D (PLD) knockout mutants of pldδ and pldα1pldδ, but not of pldα1. These changes were restored to wild type by genetic complementation with active PLDδ, but not with catalytically inactive PLDδ. GAPC overexpression enhanced the seedling thermotolerance and the expression of heat-inducible genes, but this effect was abolished in the pldδ background. Heat stress elevated the levels of the PLD product phosphatidic acid (PA) in the nucleus in wild type, but not in pldδ plants. Lipid labeling demonstrated the heat-induced nuclear co-localization of PA and GAPC, which was impaired by zinc, which inhibited the PA-GAPC interaction, and by the membrane trafficking inhibitor brefeldin A (BFA). The GAPC nuclear accumulation and seedling thermotolerance were also decreased by treatment with zinc or BFA. Our data suggest that PLDδ and PA are critical for the heat-induced nuclear translocation of GAPC. We propose that PLDδ-produced PA mediates the process via lipid-protein interaction and that the lipid mediation acts as a cellular conduit linking stress perturbations at cell membranes to nuclear functions in plants coping with heat stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fosfolipase D , Arabidopsis/metabolismo , Ácidos Fosfatídicos/metabolismo , Proteínas de Arabidopsis/metabolismo , Fosfolipases/metabolismo , Fosfolipase D/genética , Fosfolipase D/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/genética , Plântula/genética , Plântula/metabolismo , Brefeldina A/farmacologia , Zinco/metabolismo
15.
Chem Biodivers ; 19(10): e202200696, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36000162

RESUMO

From the deep-sea-derived Fusarium sp. ZEN-48, four known compounds were obtained. Their structures were established by extensive analyses of the NMR, HR-ESI-MS, and the X-ray crystallographic data as brefeldin A (BFA, 1), brevianamide F (2), N-acetyltryptamine (3), and (+)-diaporthin (4). Although BFA was extensively investigated for its potent bioactivities, its role on TNFα-induced necroptosis was incompletely understood. In this study, BFA showed significant inhibition on TNFα-induced necroptosis by disrupting the necrosome formation and suppressing the phosphorylation of RIPK3 and MLKL (IC50 =0.5 µM). While, it had no effect on TNFα-induced NF-κB/MAPKs activation and apoptosis. The finding raised significant implications of BFA for necroptosis-related inflammatory disease therapy and new drug development from marine fungi.


Assuntos
Fusarium , Necroptose , Fator de Necrose Tumoral alfa/farmacologia , Brefeldina A/farmacologia , Necrose , NF-kappa B , Apoptose
16.
Anal Biochem ; 655: 114846, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35973625

RESUMO

Analysis of the full spectrum of secreted proteins in cell culture is complicated by leakage of intracellular proteins from damaged cells. To address this issue, we compared the abundance of individual proteins between the cell lysate and the conditioned medium, reasoning that secreted proteins should be relatively more abundant in the conditioned medium. Marked enrichment for signal-peptide-bearing proteins with increasing conditioned media to cell lysate ratio, as well loss of this signal following brefeldin A treatment, confirmed the sensitivity and specificity of this approach. The subset of proteins demonstrating increased conditioned media to cell lysate ratio in the presence of Brefeldin A identified candidates for unconventional secretion via a pathway independent of ER to Golgi trafficking.


Assuntos
Complexo de Golgi , Proteínas , Brefeldina A/metabolismo , Brefeldina A/farmacologia , Meios de Cultivo Condicionados/metabolismo , Complexo de Golgi/metabolismo , Proteínas/metabolismo
17.
Cell Calcium ; 106: 102634, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35917684

RESUMO

Amongst the superfamily of transient receptor potential (TRP) channels, TRPV5 and TRPV6 are specialized members that mediate Ca2+-selective transport across epithelial membranes. Intriguingly, fluorescent fusion proteins of TRPV5 or TRPV6 are hardly discernible within the plasma membrane of living cells. Instead, TRPV6 is mostly found in vesicular membrane compartments, indicating either a rapid degradation or cycling of channel-bearing vesicles between endomembrane compartments and the plasma membrane. In TRPV6-expressing cells, brefeldin A, a toxin that blocks the transit between the endoplasmic reticulum and the Golgi apparatus, caused a drop in [Ca2+]i with a half time in the range of 0.5-1 h. Upon wash-out of the toxin, the [Ca2+]i rose to a steady-state level within 2-3 h. Consistently, the synchronized forward trafficking of TRPV6VL-eGFP after brefeldin A wash-out led to a visible accumulation of the protein within the plasma membrane, as shown by confocal and total internal reflection microscopy. Analysis of the internalization route and differentiation of vesicle populations provided evidence for a clathrin-dependent internalization pathway. Most TRPV6VL-bearing vesicles co-stained with Rab5a, a marker protein for early endosomes. Fewer vesicles were co-localized with Rab7a (late endosomes) or with Rab11 (recycling endosomes). From these data, we propose that the lack of plasma membrane visibility of the channel results from a rapid internalization, which in addition to transcriptional regulation, adds a layer of functional channel regulation to modulate transepithelial Ca2+ transport.


Assuntos
Cálcio , Canais de Cátion TRPV , Brefeldina A/metabolismo , Brefeldina A/farmacologia , Cálcio/metabolismo , Membrana Celular/metabolismo , Complexo de Golgi/metabolismo , Canais de Cátion TRPV/metabolismo
18.
Cell Stress Chaperones ; 27(5): 561-572, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36029373

RESUMO

Pulmonary arterial hypertension (PAH) is driven by vascular remodelling due to inflammation and cellular stress, including endoplasmic reticulum stress (ER stress). The main ER-stress chaperone, glucose-regulated protein 78 kDa (GRP78), is known to have protective effects in inflammatory diseases through extracellular signalling. The aim of this study is to investigate its significance in PAH. Human pulmonary arterial smooth muscle cells (PASMC) were stimulated with compounds that induce ER stress, after which the secretion of GRP78 into the cell medium was analysed by western blot. We found that when ER stress was induced in PASMC, there was also a time-dependent secretion of GRP78. Next, naïve PASMC were treated with conditioned medium (CM) from the ER-stressed donor PASMC. Incubation with CM from ER-stressed PASMC reduced the viability, oxidative stress, and expression of inflammatory and ER-stress markers in target cells. These effects were abrogated when the donor cells were co-treated with Brefeldin A to inhibit active secretion of GRP78. Direct treatment of PASMC with recombinant GRP78 modulated the expression of key inflammatory markers. Additionally, we measured GRP78 plasma levels in 19 PAH patients (Nice Group I) and correlated the levels to risk stratification according to ESC guidelines. Here, elevated plasma levels of GRP78 were associated with a favourable risk stratification. In conclusion, GRP78 is secreted by PASMC under ER stress and exhibits protective effects from the hallmarks of PAH in vitro. Circulating GRP78 may serve as biomarker for risk adjudication of patients with PAH. Proposed mechanism of ER-stress-induced GRP78 secretion by PASMC. Extracellular GRP78 can be measured as a circulating biomarker and is correlated with favourable clinical characteristics. Conditioned medium from ER-stressed PASMC reduces extensive viability, ROS formation, inflammation, and ER stress in target cells. These effects can be abolished by blocking protein secretion in donor cells by using Brefeldin A.


Assuntos
Hipertensão Pulmonar , Artéria Pulmonar , Brefeldina A/metabolismo , Brefeldina A/farmacologia , Brefeldina A/uso terapêutico , Proliferação de Células , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Glucose/metabolismo , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/metabolismo , Inflamação/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Remodelação Vascular
19.
Molecules ; 27(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35566172

RESUMO

The estrogen receptor α (ERα) is an important biological target mediating 17ß-estradiol driven breast cancer (BC) development. Aiming to develop innovative drugs against BC, either wild-type or mutated ligand-ERα complexes were used as source data to build structure-based 3-D pharmacophore and 3-D QSAR models, afterward used as tools for the virtual screening of National Cancer Institute datasets and hit-to-lead optimization. The procedure identified Brefeldin A (BFA) as hit, then structurally optimized toward twelve new derivatives whose anticancer activity was confirmed both in vitro and in vivo. Compounds as SERMs showed picomolar to low nanomolar potencies against ERα and were then investigated as antiproliferative agents against BC cell lines, as stimulators of p53 expression, as well as BC cell cycle arrest agents. Most active leads were finally profiled upon administration to female Wistar rats with pre-induced BC, after which 3DPQ-12, 3DPQ-3, 3DPQ-9, 3DPQ-4, 3DPQ-2, and 3DPQ-1 represent potential candidates for BC therapy.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Brefeldina A/farmacologia , Brefeldina A/uso terapêutico , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Relação Quantitativa Estrutura-Atividade , Ratos , Ratos Wistar
20.
Phytochemistry ; 200: 113243, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35577124

RESUMO

Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation is one of the most important carcinogenic factors in many solid tumors, which leads to the poor prognosis and therapy resistance of cancer. In order to develop direct or indirect KRAS inhibitors, one unique asymmetric dicyclopentenone penipentenone A, three undescribed brefeldin A (BFA) derivatives, and five known BFA derivatives were discovered from the endophytic fungus Penicillium brefeldianum guided by LC-MS/MS and cytotoxic activities. Their structures were elucidated by optical rotation, mass spectrometry, and NMR spectroscopic data. The absolute configurations of four undescribed compounds were elucidated by comparison of the experimental and calculated ECD spectra. The antiproliferative activities of obtained compounds against three KRAS mutant tumor cell lines and two BFA derivative-sensitive cell lines were evaluated. Besides 4-epi-15-epi-brefeldin A, the other compounds showed significant inhibitory activities against those tumor cell lines with IC50 values ranging from 0.82 to 18.87 µM. Intriguingly, penipentenone A selectively inhibited KRAS mutant cancer cells SW620 (KRASG12V) and ASPC-1 (KRASG12D). BFA and four derivatives showed potent cytotoxic activities against all selected tumor cell lines H358 (KRASG12C), SW620 (KRASG12V), ASPC-1 (KRASG12D), PC-3, and HepG-2. These findings will provide undescribed lead compounds for developing drugs that target KRAS mutations.


Assuntos
Antineoplásicos , Neoplasias , Penicillium , Antineoplásicos/química , Antineoplásicos/farmacologia , Brefeldina A/farmacologia , Linhagem Celular Tumoral , Cromatografia Líquida , Penicillium/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...